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TECHNICAL NOTE 4086

DISCRETE POTENTIAL THEORY FOR TWO-DIMENSIONAL LAPIACE
AND POISSON DIFFERENCE EQUATIONS

By Charles Saltzer
SUMMARY

A method is given for solving problems sssoclated with ILaplace and
Poisson equations which, in general, reguires considerably fewer equa-
tions than the ususl methods and which gives a convergent solution by
the method of successive gpproximations. For infinite regions, by this
method, the exact solution for the Dirichlet and Neumsnn problems can be
found by solving a system of equations with as many variables as there
are boundary points of the reglon. In addition, st each stage of the
iteration a best possible estimate of the error of the approximate solu-
tion with respect to the exact solution of the difference equation for
the Dirlchlet problem is furnished, and, for the Neumann problem, a bound
for the error of the normal difference of the approximate solution is
given,

INTRODUCTION

Certain problems in steady-state heat flow, gas dynamics, both for
compressible and incompressible flows, plane torsion, and so forth can
be formulsted as problems associated with the ILaplace or Poisson equa-
tlons in two dimensions. A frequently used method of spproximating the
solution of the Laplace eguation consists of replacing the region by
those points inside the region or on the boundary whose coordinates are
multiples of a fixed positive number, which is the mesh size, and
replacing the Laplace equation by the Laplace difference equation which
says that the value of the function at a point not on the boundary is
the mean of ite values at the four neighboring points. This gives a
system of as many equations as there are points inside the region. These
equations are solved by relaxation or iteration. The present report con-
cernsg a formulation of a camplete system of equations for as many parsm-
eters as there are boundary points of the region where the desired func-
tion 1s 8 given linear function of these parameters for the Dirichlet
and Neumann problems. For example, for a "square region" containing,
say, 900 inner points, the number of varlables and equations required
by the present method 1s 120. In any case, the larger the region the
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greater the utlility of the method. This system of equations is given

in & form which allows the application of the method of successive approx-
imations, that 1s, each parsmeter is given by a linear function of all the
parameters. In addition, the method of successive epproximstions applied
to this system of equations gives a solution which ies known to converge at
least geocmetrically for all regions. This method is a finite-~difference
analog of the integral-equation method of potential theory and is based on
some results of Courant, Friedrichs, and Lewy (ref. 1), McCrea and Whipple
(ref. 2), StBhr (ref. 5), and Duffin (ref. L).

The method has the disadvantage that the calculations required for
setting up the system of simultaneous equations are much more camplex
than 1n the usual methods. However, for some problems the method can be
uged to reduce the number of variebles so that the problem is within the
capacity of an sutomatic computing mechine. Also, 1f more than one prob-
lem is to be solved for a given region this method offers a considerable
advantage.

Since, as 1s shown in this report, the Polsson difference equation
for a finite region can readily be reduced to the Iaplace equation by a
simple computation, the ebove remerks apply also to the Poisson difference
equation.

For nonlinear equations which can be written in.a form such that the
Laplacian of the unknown function equals a given function whose arguments
are the unknown function, its derivatives, and the space variables, the
method of successive aspproximations is used, each step consisting of the
solution of a Poisson difference equation as, for example, in the Rayleigh-
Jansen method.

Another advantage of the present method for the Dirichlet problem is
that at any stage a precise bound is automatlcally provided for the error
of the previous approximation and a bound is given for the corresponding
error for the Neumsnn problem of the normel derivative.

On the theoretlcal side the structure of the functions satisfying
the Laplsce difference equation can be completely described in terms of
discrete potentials, and theorems which extend Duffin's results (ref. 4)
can be derived.

In addition, the method of the present report can be applied to the
biharmonic difference equation, conformal mepping, and the theory of
monodiffric functions (ref. 5). An interpretation in electrical network
terms can be used to lnvestigate electrical analog methods for solving
the Dirichlet and Neumenn problems. Finelly, the results of this paper
can be extended to n dimensions.

In the present report the equations of the method wlll be derived
and formulated for computational purposes in the analysis section. Worked
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exemples of the Dirichlet and Neumann methods are discussed. In appen-
dix A the proof of Green's first, second, and third identities is given.
In appendixes B and C the homogeneous integral-equatlon anslogs are given
for the Neumann and Dirichlet problems, respectively. For those readers
who are not familisr with classical potentiasl theory, of which the method
presented hereln is an analog, a brief sketch is given in appendix D.

This investigation conducted at Case Institute of Technology was
sponsored by and carried out with the financial assistance of the National
Advisory Committee for Aeronautics.

SYMBOLS
A (Ars) matrix
Al (Aps') matrix
Apg = ?(ors)
Apg' = cP(ars')
Apg" = cP(ark"
ark_" = -b" - C"
(Brg) = yy = g
ars' = b! - ¢!
B (Bpg) matrix
Byg = cP(brs)
b! (brs') matrix
bll = (-brsll)
(bors) = By - By’
byg’ coordinates of rth point of graph of normal exterior segments
brs" coordlinates of rth point of graph of inner normal segments
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metrix analogous to kernel of integral equation of potential
theory for Dirichlet problem

matrix analogous to kernel of integral equation of potential
theory for Neumann problem

matrix used in calculation of AiW, -qrtnA

£ X 7y metrix whose rows are lists of coordinetes of boundary
points

(¥ + v) X 7 matrix whose rows are lists of coordinates of -
boundary points

diagonal matrix whose diagonal entries give number of adjacent
inner normsl points

a region, that 1s, a set consisting of only inner and boundary
points

set of ilnner points of G

7 X 7y ldentity matrix : - I

q)(P - Q) 11

7 X 1 matrix each of whose rows is dipole magnitude of inner
normsl segments terminating on boundary point corresponding
to given row

y X 1 metrix whose rows give mass on boundary point corre-
sponding to row for elther a simple- or double-layer
potential '

y X 1 matrix whose rows glve mass on normasl point corre-
sponding to row (double-layer potential)

point or coordinstes of point with integral-valued coordinates

coordinates of kth boundary point of G

coordinates of kth inner normel point of G

coordinates of kth polnt of set of end points of exterior
normal segments of G
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(Pkl" ’q-kﬂl)

wn

(XJY)

124

7

7k

coordinates of kth polnt of set of points comsisting of
inner normal and boundary points of G

point or coordinates of polnt with integral-valued coordinate

functional operator which for given point gives value of
function on adjacent immer points of G minus product of
number of such polnts and value of function on given point

distance from origin

ith inner normal segment
ith exterior normal segment

function defined on G which satisfies Leplace difference
equation on inner points

7 X 1 metrix whose elements are values of U on boundary
points

function defined on G
potential of simple- or double-layer distribution
¥y X 1 matrix of values of W on boundary polnts

£ X 1 matrix of values of simple-layer potential W on end
points of exterior normal segments

(v + 7) X 1 matrix of velues of W on normal inner and
boundary points

integral-valued coordinates

v X ¥ matrlix where each column is list of coordinates of
boundary points

number of inner normsl segments
number of boundaxry points

dlagonal elements of Dp

AT, M AT factors of 7 x 1 matrix



6 NACA TN L4086

e} difference operator

ek 7Y X 1 matrix of errors of kth approximation of U

1 incidence metrix of graph of inner normal segments

Ny columns of 17 corresponding to normal inner points of G
M columns of 17 corresponding to boundary polnts of G

' incidence matrix of graph of exterior normal segments

columns of 7' corresponding to boundary polnts

e angle in polar coordinates

M magnitude of dipole for oriented unit segment

v number of normal points

£ number of points in graph of exterior normal segments

o matrix whose rows correspond to normsl polnts and which indi-

cates boundary points adjacent to each normsel point

T number of exterior normal segments

P fundamental solution of Laplaece difference equation
Q constant in bound for asymptotic expression of @
w . Euler's constant

Superscript:

k denotes kth approximetion of given quantity
Subscripts:

k denotes kth spproximetion of given quantity

r,s integral values

t transpose

r set of boundary points of G
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Geometrical Definitions

The set of points in the plane whose coordinates are integers will
be considered. Two points will be said to be adjacent if the distance
between them is unity. A subset of polnts G will be called connected
if for any two points of G there is a path consisting of segments of
unit length connecting them in such a manner that the end points of these
segments are all in G. A point of G is an inner point if it is adja-
cent to four points of G. A point of G 1s a boundary point if it is
not an inner point.but is adjacent to an inner poilnt. A point of G
1s an inner normal point if it is an inner point and is adjacent to a
boundary point. A unit segment bounded by one inner normal point and
one boundary point is an inner normal segment of G. A set of points is
a region if it 1s connected and every point of the set 1s either an inner
or & boundary point. The symbol G will be used in the following dis-
cussion to denote a region. The coordinates of the inner polnts willl be
dencted by (x,y); the coordinates of the inmer normsl points, by (pk',qkj

where k=1, 2, . . . 7; the coordinates of the boundary points, by
(Pk’qk) where k=1, 2, . . . v; and the inner normal segments, by 81

wvhere k=1, 2, . . . B.

The matrices My = (quk) and Tp = (nPik) are defined by

-1 if (pk',qk') is an end point of 84

MNik = (1)
0 if (pk‘,qk') is not en end point of s4

1 if (pk,q_k) is an end point of sy
rix = (2)
0 if (Pk’qk) is not an end point of 84

It will be assumed that the boundary points of the regions considered
consist of a finite set of points.
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Discrete Potentials and Polsson Difference Equation

Following the notation of Stthr (ref. 3), the fundamental solution
of the Laplece difference equation in two dimensions is written as

¢(X)Y) = 9(P)
where x and y are integers and ¢(P) hes the following properties:

@(x)y) = @(lxl;IY') = @(|YIJ|X|) (5)

1 if P 1s origin

Rlo(P) | = (&)

0 if P 1is not orig;n

where

Rlo(x,y)] = o(x+1,y) +o(x - 1,¥) +0(x,y+ 1) + (x,¥ - 1) - 4o(x,y) (5)

Table I gives the values of ¢(p,q). In addition, the followlng asymp-
totic estimate is given by StBhr. There is a positive constant & such
that

- (3 10e® 4+ L) - L i3
o(x,y) <H“ log,~ + - ab = loger| & 2 (6)
where
r=\x2 + y2
= 1 1
n—»®

In the present paper this function will be used to define & function
of four variables. If P = (xj,y;) and Q = (xp,yp) then

P-gq-= [(xl - xe)',(yl - y2)] and L(P,Q) 1is defined by

12,0) = 92 - & = 9(sy - %) (12 - v3)| a0



[}

NACA TN 4086 9

By equetions (3) and (4)

L(P,q) = @[(xl - x3),(v1 - .vz)] = <P(| X = Xp|,s|yy - yel) = L(q,p) (8)

and

1 if P=Q
Ro[L(P,Q)] = Rp[L(P,Q)] = (9)
0 if P £Q

where Rpy means that (2,¥) in equation (5) is to be teken as (xe,yz)
and Rp means that (x,y) in equation (5) is to be taken as (xl,yl).

If n arbltrary points (xl,yl), (xg,yz), « o e (xn,yh) are glven
and if to the kth point (xk,yk) there corresponds & real number my

where k=1, 2, . . . n, then the function
n
WE) = ) md(PQ) (10)
k=1 .
where Qp = (xk,yk) wlll be called the potential of the mass distribu-~

tion whose density 1s n = ngk,yk) on the gilven points and zero else-
where. By equation (9)

if P =@

r[W(@)] = o i piq (11)
I

where k = l, 2, « s o I

If f(P) is a function defined on the inner points of a reglon
then the Poisson difference equation is

R[V(R)] = £(P) (12)

for each inner point of the region, where V(P) may be subject to addi-
tional conditions at boundary points and normal points. If U(P) 1is

defined by
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o) = V() - ) H@L(Pa) (13)
k

where the sum is to be taken over all inner points @Q;, Qp, . « ., then
by equstions (11) and (12),

r[U(p)] =0 (1)

at all inner points. The conditions on U(P) at the boundary points, or
at the boundery and normal points, can be computed from the corresponding
conditions on V(P) and equation (13). In this way a problem for the
Poisson difference equation can be reduced to a problem for the Laplace
difference equetion by a direct calculation provided that the region 1s
finite. Por an infinite region the above reduction requires further
study(relating to the convergence of approximetions for the sum in equa-
tion (13).

Simple~ and Double-Layer Potentlals

A simple-layer potential is the potential of a mass distribution on
the boundary points of a region and is given by

W(x,y) = W(e) = i mL(P,Qk) = i mkq)l:(x - 2 )5(¥ - qk)] (15)
k=1 =1

where my is the mass on the kth boundary polnt Qp = (pk,qk). Since

there are no masses at the inner points, the simple-layer potential
satisfies the laplace difference equation on the inner points. It will
be seen later that the solution of the Neumenn problem can be represented
by such & potential.

A dipole of megnitude p 1is defined as a pair of masses situated
on the end points of & segment where one of the masses 1s p and the
other mass is -p. A double-layer potential is defined as the potential
due to a dipole distribution on the normal segments of a region. The
following convention willl be observed: A dipole megnitude u;, is asso-

ciated with the segment sk(k =1, 2, «. « « B) and the mass of magnitude
My associated with 8, 1s to be consldered as being on the boundary

point of the segment s, while the mass of megnitude T this dipole
is to be considered as being on the normal point of the segment sy . It

1s a consequence of the definitions of ny and 1nn (egs. (1) and (2))
that :
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B
mg' = Z sk (16)

r=1

where k=1, 2, . « « v and

ﬁi Trrstr (17)

r=1

mg

where k=1,2, . .. 7 and wvhere my; and mg' are the masses associ-

ated with the dipole potentials at the boundary and normsl points,
respectively.

If my' =m', mp', « o «mMy', Mg =M, Moy o o o m.,, and
By = H1, Moy, ¢ « « Mg Where the subscript + means that the transpose
is to be taken, then the above equations can be written as

m' = Mg P (18)

Hence the potential W(P) of & double layer is

W(x,y) =W(P) = i mk‘m[(x-pk‘),(y-qk')] +i mkq3|:(x- Pk),(y—q_k)] (20)

k=1 k=1

This potentlal satisfies the ILaplace dlfference equation at all inner
points which are not normsl points; at normal points by equation (9),

R[W(pk' ,qk')] = m' (21)

where k=1, 2, . . « ¥« The double-layer potentials will be restricted
by the condition that segments with common boundary points have the same
dipole magnitudes. Thus, if the order of the kth boundary point is 7

(i.e., the number of normal segments on this boundary point is 7k)’ then
the dipole magnitudes of each of the segments is (7k)'lmk. Let DP be
defined by :



12 NACA TN L4086

Dp = mremp (22)

It mey be noted that Dp 1s a diagonsl matrix whose diagonal elements

are precisely the orders of the corresponding boundery points. Thus,
in matrix form, the above condition can be wrlitten

po= npDr'lm : : . (23)

and it will be assumed that all double-lsyer potentials considered comply
with this condition. If both sides of equation (23) are multiplied by
Nt and o 1s defined by

O = =Ty (2)

then, by equetion (18),

m' = -oDp " m (25)

The reason for this restriction is that 1t guarantees the exlstence
of a function U(P) ' defined on G so that

U(P) = W(P) (26)

r[u()] =0 (27)

for every inner point P belonging to G. To prove this assertion let
U be defined by

Og = (U, Upy « - .7T,) (28)

and let U(P) = W(P) if P 4is an inner point and U(pk,qk) = U, for

boundary points. Silnce W(P) satisfies the laplace difference equation
at all nonnormal inner points it is only necessary to verify that U

can be determined so that equation (27) is satisfied on the normal points.
By equations (21) and (27) a necessary and sufficient condition that U
can be determined so that equation (27) is satisfied is that the system
of equations :

R[W(Pk':Q.k') - U(Pk')qk-' )] = mk' (29)

where k=1, 2, « . « Vv, have a solution. Since W and U have identi-
cal values at all inner points, egquation (29) states that at each normal
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inner point the sum of the differences W - U at the adjacent boundary
points 1s equal to the mass at the given normsl point. If W 1is defined

by

ﬁt = (W(Pl:Ql), W(PEJQQ): * o . W(Py’qy)) (50)

then by the definition of o (eq. (24)), the system of equations (eq. (29))
can be written

o -0) =m* (31)
By equstion (25) it follows that
W-U= -Dl-.-lm (32)

is a solution of equation (31) which defines U. This solution which
defines U and consequently U will be called the harmonic extension
of W on G. Hence, by equation (23)

w o= -nr(i': - 0) (33)

Equation (33) is the discrete snalog of the discontinuity at the
boundary of a double-layer potential of the classical theory, and, as in
the classical theory, a double-layer potential will be used to solve the
Dirichlet problem. .

Reduction of Dirichlet Problem to Integral-Equation Anslog

The Dirichlet problem for a bounded reglon consists of finding &
function U defined on a given region which satisfies the laplace 4dif-
ference equation on the inner points of the region and which assumes
arbitrary prescribed values on the boundary polnts.

Since by equations (18), (19), and (20) W(P) is a linear function
of u, then by_equation (30) W is a linear function of p. In equa-
tion (33) if U 1is taken as glven by the prescribed values of U on the
boundary then this system of equations can be regarded as a system of
linear equations for p. If the system of equation (33) has a solution
for p, then m and m' can be calculated by equations (18) and (19),
and W can be calculated by equation (20). If U(P) 1s defined by the
condition that it equals W(P) at inner points and, on the boundary
points, coincides with the prescribed values of the Dirichlet problem,
then U is the solution of the Dirichlet problem. This cen be seen by
the following argument. If equation (33) is multiplied by Tyt ©OR the

left, then equation (31) is a consequence of equation (24). This meens
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that U is the harmonic extension of W; that is, U satisfies the
Laplace difference equation on the inner points of G. Since by the
construction U assumes the prescribed values, U(P) is the desired
solution and, hence, W represents U on the lnner points of G. This
result may be formulated in the following way. For a given value of U,
if the system of equations (33) has a solution for u, then the double-
layer potential defined by p represents U on the inner points of G.
Since equetion (33) is a system of B equations in the $ unknowns
1, the existence and, in addition, the uniqueness of the solution are
demonstrated 1f it can be shown that the corresponding homogeneous system
B = -T}PW (5"{')

hes only the trivial solution. It wlll be shown in appendix C that
equation (34) has only the trivial solution.

The discussion ebove applies also to an unbounded region 1f the
function U is required to be reguler at infinity end to have the value
zero et infinity. The definition of regulerity glven in the appendix
corresponds to the definiltion of potential theory.

Solution of Integral-Equation Analog for
Dirichlet Problem by Iteration

Since the systems of equations (32) and (33) are equivalent, the
system of equations (32) will be considered. If M is defined by

M = Dp~lm (35)
then equation (32) can be written N _ _ _
M=-(F-0) (36)
By equations (20) and (30), i1f A = (Apg) end B = (Brs ) then
W = Am + Bm' (37)

vhere, with r and B =1, 2, « « « 7,
(Ars) = <P([ Py - Ps|s| % - qs|) (38)
&nd With r = l’ 2’ « o o 7 and g8 = l’ 2,‘ « o V,

(Brs) = Q(lpr - ps' [5]ar - qs'l) (39)
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Hence, by equation (25)
T = -CM (ko)

where

-(ADP - Bc) (31)

Thus, equation (36) can be written
M=U+cM (k2)
1t M(K) (vhere k=0, 1, 2, . . .) is defined by

M0 = § (43)

(L) o § 4 ) (k)

Then M(k) is the result of the kth iteration. It is known thet this
sequence converges at least geometrlcally and an estimate of the rate of
convergence 1s being investigated.

1f m(k) and m'(K) are defined by

alk) - DTM(k)

o (&) = _qu(X)

a8 in equations (24) and (25), and W(k)(x,y) is defined by

w(k)(x,y)—i (k)g [x-p y-qr] Zmr)()[(x‘Pr)(y‘qr)]
=1

= (45)

H

then the harmonic extension U(k) of W(k) is

v (x,5) = W) (x,) (146)

for all inner points (x,y), and U(k) is taken as the kth approximstion
of U(x,y) on the inner points of G.
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A best possible bound for the error of U(k) of the kth iteration
can be given in terms of the result for the (k + 1) iteration, M(k*l)
and M(X). By equation (%0),

and hence the values ﬁ(k) on the boundary points of the harmonlc exten-
sion of ﬁ(k) are defined by the relation

_E-';(k) _ ﬁ(k)] - ﬁ(k) + CM(k) (48)

Comparison of this equation with equation (44) yields
G - 5K o y(srd) (k) (49)

Since U - ﬁ(k) is the difference of two solutions of the Laplace dif-

ference equation for G, U - ﬁ(k) also satisfles the Laplace difference
equation and by the maximum modulus principle must atteln its maximum

on the boundary. Thus the element of U - U(k) which is greatest in
absolute value 1s a best possible bound for the error and this can be
computed from equation (49). Thus at each step of the iteration proc-
ess a bound can be computed for the error of the approximation provided
in the preceding step.

Outline of Calculations for Dirichlet Problem

The calculation of the solution of the Dirichlet problem may be
divided into three stages. The first stage consists of the calculation
of the matrix C defined by equation (41); the second stage concerns
the solution, or the approximation of the solution, of the system of
equation (hz); and the finsl stage consists of computing the values of
the desired function on the inner points in the following way. By equa-
tion (35)., equation (23) can be written

o= nIM (50)
and by equations (18) and (19)

m' = oM (51)

m = DpM (52)
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Since M is computed in the second stage, these equations give m and
m' and by the use of equation (40), a formulae for W(P) is obtained.
Since at inner points W and U colncide, the values of U on the
inner points are computed by this formula, The calculations of the sec-
ond stage may be carried out In several ways, among them the iteration
procedure defined by equations (43) and (44)., It should be noted that
any estimate of the error based upon equation (49) is equivalent to com-
puting one step of the iteration procedure.

The remainder of this section concerns the calculstion of the
matrix C. Tt may be noted that C dJdepends only on the gecmetry of the
given region and not on the values of U and, once computed, may be
used for any Dirichlet problem for this region.

By equation (41) C is calculated from A, B, o, and Dp. By
equations (23) and (24), ¢ end Dp are calculated from np and T,

as defined by equations (1) and (2). As a preliminsry step in the cal-
culation of A and B, two auxiliary meitrices, & =a,; and b = bpg

defined, with r end s =1, 2, « « . 7, by

Bpg = (lpr - Psl’[qr - qs|) (53)
and, with »r=1,2, « « + 7 and s =1,2, . « . Vv, by

brg = ([Pr - pg' |5l - qs‘l) (54)

are calculated. These two matrlices are in turn calculsted from three
other matrices a.., B_., aad Byvl defined by

77’ Py
(P 9)(P1s9y) - - - (Prs2a)

)
| gp7’q7)(P7’q7) e (Byrdy)

where Lyy is a 7 X y matrix, each column being a list of thp coordi-
nates of the boundary points,
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(P]_;Cll) (Pl:ql) o s e (P]_;ql)
| 290D 0
Pydy) Byrdy) + ¢ 0 (Pyry)

where ., is a ¥ X v matrix each column again being a list of the
coordinazes of the boundary points, and

- (@y'9")

@v"qvj

®1'59") @'
] (®1'59,") @2'%")
(_Pl"qlt) (Pet’qev (pv',qu)

where B'yvl is a 7 X v matrix each row of which is a list of the
coordinates of the normel points. By equations (53) and (54)

4% (58)

a8 = @77 -~ @77t ’ (59)

b

Byy = By (60)
and by equations (38) and (39),

Apg = (P(ars) (61)
Brg = @ (byg) (62)

The procedure of stage one may be summarlized as follows: For the
glven region, number the normsl inner points from 1 to v, the boundary
polnts from 1 to 7, and the normal segments from 1 +to PB. Then from
a list of the coordinstes of the normal inner and boundary points write
the matrices o, (eq. (56)), By (eq. (57)), end B.,' (eq. (58)),
and calculate a and b. By the use of table I for ¢, calculate A
and B by equations (61) and (62). The next step is to write P

and 1y by equations (1) and (2) and calculate Dp and o by equa-
tions (22) and (24). Alternatively Dp can be written by noting that



NACA TN 4086 ' 19

it is a diagonal metrix such that the rth diagonal element is the number
of normal points adjacent to the rth boundery point (r =1, 2, . . . 7),
and o0 = (Uik) may also be written directly by the following definition

which is equivalent to equation (24):

1 if (Pk’qk) is adjacent to Cpi‘,qi') (65)

Q
]

ik
0 1if (p,,q ) is not adjacent to (Pi"qi’)

From A, B, o, and Dp, C is calculated by equation (4l). As a

partial check on the calculation of C it is proved in the appendix
that the sum of the elements in each row of C 1s zero.

The matrices for the reglon indicsted 1in figure 1 are given in
tables IT and III.

The successive approximations of M and the error of the succes-
give approximations of are also given in table IV,

Reductlon of Neumann Problem tb Integral-Equation Analog

For a finite region the data of the Neumann problem are the set of
differences for each normal segment of the value of a function at the
inner normal end polnt minus its value at the boundary end point, and the
Neumaenn problem consists of determining the welue of the function, subject
to the lLaplace difference equation, on the points of the region. For an
infinite region, the additional restriction is made that the function be
regular at infinlty. As in classical potential theory it 1s a consequence
of the linearity of the Iaplace difference equation that the solution, if
it exists, is determined only up to & constant. For an infinite region,
the solution obtasined by the method of this paper 1s the solution whose
velue et infinity is zero and, for a finlte reglon since s simple-layer
potential is used, the solution has the property that the potential repre-
senting this function on G 1is also defined on the camplementary region
and has the vealue zero at infinity. It will also be shown in the appen-
dix that, as in classical potential theory, a necessary condition that
the Neumsnn problem have a solution is that the sum of the given differ-
ences be zero.

The following definitions will be required. ILet

(Aiﬁ)t = (MU1, AU, - - . AU,) (64)
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where AU, 1is the sum of the differences of U <for the inner normal
segments on the kth boundary point; that is, AUy, 1s the sum of the

values of U on the normal points adjacent to the kth boundary point
minus the product of the number of normel inner points adjacent to this
boundary point and the value of the function on this boundary point.

The segments for which at least one end point is a boundary point and
which are not inner normal segments of G will be called exterior nor-
mel segments of G. Let W be a function whose domain includes the end
polnts of the exterior normel segments and let

(A, = (BHys Bglps « + « A, (65)

where AW, is the sum of the values of W on those points which are

both end points of exterior normal segments and are adjacent to the kth
boundary point minus the product of the number of these adjacent points
and the value of W on the kth boundary point. A formula for the ceal-
culstion of equations {64) and (65) will be glven in the next section.

It may be remarked that in the notetion of equation (64) the condition

on the sum of the differences is

Y4

z AU =0 (66)

k=1

and if W is a simple-layer potential, by equations (15) and (11),
AW + AW, = my (67)

where k=1, 2, . . « 7 and AW, 1s calculated in the same way that

AU is calculated. Unless a statement is mede to the contrary all
simple-layer potentials conslidered willl be subject to the condition

imk=0. (68)

k=1

It will be shown in the eppendix that this condlition insures that

1im W(P) = 0. Since a simple-layer potential satisfies the Leplace dif-
P

ference equation on all inner points, it follows thati W(P) is a solu-~
tion of the Laplace difference equation for the given region. Hence AW
represents the differences of a solution of the Laplace difference equa-
tion on the inner normal segments and by equation (66)
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4
Z MW = O (69)
k=1
By equations (67), (68), and (69),
7
AWy = 0 (70)
k=1

For the representstion of the solution of the Neumann problem by a
simple-layer potential it will be assumed that AU is given. This can

be calculated from the usual form of the data, that 1s, from the differ-
ences prescribed for the lnner normal segments. However, it will be _
shown in the appendix that on the inner points U 1s determined by AU

only; that is, 1f two distinct sets of differences are given so that
A3U7 = AU, then Uy = Up on the inner points up to a constant provided

U; and Us satisfy the Laplace difference equation on the inner points
of G.

If the simple-layer potential W represents the solution of a given
Neumenn problem then

AW = A0 (71)
and by equation (67)
Aiﬁ + AN =m (72)
where my =mj, Mo, « « m. and my is the coefficient of

¢[Zx - pk)(y - qki] in the representation (eq. (15)) of W(x,y).

Conversely, if for given values of Aia, there are 7y masses
My, Moy o o o m7 so that the simple-lsyer potential of these masses
satisfies equation (72) then by equations (67) and (72)

and hence W computed from these masses by equation (15) represents a
solution for the given values of A4U. In addition, to show that equa-

tion (72) has a unique solution for given values of AU when eque-~

tion (66) is satisfied, since the number of equations coincides with the
number of unknowns, it 1Is only necessary to show that the corresponding
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homogeneous system has only the trivial solution.
agsertion will also be found in the appendix.

Solution of Integral Equation Analog of Neumann
Problem by Iteration

As a preliminary calculation a formula for equation (72) will
derived. Assume that there are T exterior normal segments
(sl', 8o', « « o B!
assigned orientation.
exterior normal segments are dencted by (pk",qk") vhere k =1, 2,
It will also be assumed that the numbering has been cerried out so
the boundary points are the first 7 points of this set, that is,
(Ppoax) = (P >q;") with k=1, 2, . . . 7. If A (Aps") end
and W' are defined by

Apg' CP[(PI-" - Ps)’(qr" - qs):l

m, = (ml, Moy o « o m7)

. Wé

)

g8 = l, 2, « & 7} and Wk"

w“ = (lﬂ, WEII, . .

where r =1, 2, « « £,
k=1, 2, . . £, then

W' =A'm

Let q' = (nrk') be the incidence matrix of the graph of the

exterior normal segments, that is,

-

1 1f (pk",qk") is terminal point of &,

! = < -1 if (pk",qk ) is initial point of s
0 if (Pk ,qk") is not on s&,' (r=1,2, « « . T}
k=1, 2, ..

4086

The proof of this

be

) and let these segments have a flxed arbitrarily
In addltion, assume that the end points of the

. L] L g'

that

m

()

(1)

(76)

= W(pk",qk") where

(1)

b (78)
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and let ¢ = (nrk“) be the matrix consisting of the first 7 columns
of 7', that is,

.
( 1 1if (pk,qk) is terminal point of s..!

-1 if (pk,q_k) is initial point of s,'

1t

1 (79}

O if (pk,q) is not on sy (r=1,2, 4 o « Tj
k=1,2, ¢« ¢« «7)

e

It is a consequence of these definitions that

A = =mg"ntW" (80)
and by equation (77)
AH = C'm (81)
where
Ct = -n,"nA" (82)

To calculate A;W, let the points of the inner normsl segments

oriented from the inner normal polnts to the boundary points be denoted
by (pk'“,qkf") with k=1, 2, . . . v+ 7 where the numbering is chosen

so that (p",q™) = (Py %) with k=1,2, . .. 7. ILet n= (M )
be the incidence matrix of the inner normal segments where

.
1 if (p'",q"") is terminal point of sy

J-1 1r (Pk"':qk"l) is initial point of s, 9 (83)

0 if (pk"',qk"') isnot on 8, (r=1,2, .. .8;

k=1,2, . ..Vv+7)

- p,

r

and let np be the first 7 columns of 7. Because of the numbering

T 1s the matrix defined by equation (2). Also, if A" = (Ark" is
defined by
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A = of(or™ - Pr)(%" - %)) RS

where r=1,2, « « « v+ 7 @nd k=1,2, .. .7 and Wm o ig
defined by

ﬁnr = (Wlm’w2m’ . . wwym) (85)
where
W = W(Pk""qkm) (86)
then by equation (15)
W' = A"m (87)
But by equation (2), equation (83), and the definition of Ag,
Aiﬁ = _nr\tnﬁ-m (88)
end hence, by equation (87),
MW = C'm (89)
where
C" = -T]I\tnA" (90)
Since equation (67) holds for arbitrary values of m,
Ct +C" =1 (o1)

4

where I7 is the 7 X 7y identity matrix. Thus, C' may be calculated
by equation (82) or from equations (90) and (91).

By equation (81), for given values of AiU, equation (72) can be
written

m = Aiﬁ + C'm (92)

The solution of this equation gives m and consequently W(x,y) which
is U(x,y) on the given reglon.
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If this system is to be solved by iteration, let
n(0) - A5 (93)

m(k'l‘l) = m(o) + C'm(k) (9h)

This system is known to converge at least geometricelly and an esti-
mate of the rate of convergence is being investigated.

Outline of Calculatlions for Neumann Problem

The calculations by the present method may be summarized as follows:
First, C' 1is calculated; second, the solution m of the system of equa-
tions (92) is calculated or approximated; and, third, m is used to cal-
culate W on the region by formuls (15). The procedure for the celcula-
tion of C' by two methods is given below. The double calculation of
C' is a check for the correctness of the calculation.

In the first method A' 1s calculated in the following way. Let
b!' = (b ! end c' = ! be defined by
rk Crk

(Pl" I q'l") (Pl" ) Cll“> o s s (Pl" s ql!l)
b! = (P2" ? q'2") (Pen s 9.2") . o & (P2" s (12") (95)
(Pgn’qﬁlj Cpgnxqgn) .« . (pg",qgn)

vhere b' 1is the § X 7y matrix, each column of which 1s a list of the
coordinates of the end points of the exterior normal segments, and

(P17%) (P2r %) © (Pyry)
(P1,9) (P25 9p) - (PrrYy)

!\{P]_’q'l) (P2’q2) o o e (P‘)’,q?)/

4
/

(967
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where c¢' 1is the & X 7y matrix, each row of whilich is a list of the
coordinates of the boundary points. Let a' be defined by

at =b' - c’ (97)
Then by equation (T4) ‘
e = 9o ES

If 7' and 1" are written by definitions (78) and (79), C' is
then calculated by equation (82).

In the second method for the calculation of C', let D" = (brk")

(pl""qi"l) Qpl"',qlﬂﬁ . (Pl“"ql"?
CPQ“':QQ'") (PE"',QQ“O . (p2""q2"9

(p7+vm’q7+vm) (p7+vm’q7+vm) .. (p7+vm,q7+vm)

" = (99)

where b" 1s the (7 + v) X 7 matrix, each column of which is a list
of the coordinates of the end points of the interior normal segments,
and

(P1021) (Porp) + = ¢ (P2 Yy)

) (pl’q'l) (P2:q2> . . (P71q7> (loo)

(P1:91) (Pps%) + * « (PysLy)

c"

where c" is (7 + v) X y matrix, each row of which is a list of the
coordinates of the boundary points. If a" = (ark") is defined by

aﬂ = -blf - cll___ (101)
Then by equation (84)

1)

A" = 9 (aypy" (102)
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If n and 7 are written by equations (2) and (83) then C" is
calculated by equations (90) and (91), and

¢t =1I,-cC" (103)

A partial check on the calculation of C" 1s that the sum of the rows

of C" 1is zero. This follows from the remark that equation (69) holds
for arbitrary values of m, if equation (89) is used and appropriate
values of m a&are chosen. A check on the calculation of C! by the
first method is that the sum of the elements of each column of C' 1is

l. This is a consequence of applying the preceding remark to equa-

tion (103). It may be noted that C' depends only on the geometry of
the region. Thus, after numbering the inner and exterlor normsl segments
end the end points of these segments, C' 1is calculsted, the solution of
the system of equations (92) can be approximated by iteration (egs. (93)
and (94)). The desired function is given by equation (15). To illus-
trate the method, a Neumann problem for the region of figure 2 has been
worked end the details of the calculatlons are indicated in taebles V

to VII.

The estimate of the error used is Caiﬁ - Aiﬁ(k)) where Aiﬁ(k)
refers to the kth approximation U(k). If m(k) is the kth approxima-
tion of m, and U(E) = w(k) ig computed using equation (15) where
m(k) is the kth approximation of U, then by equation (T72)

Aiﬁ-(k) = m(k) - Aew(k) (lOl!-)
But by equations (93) and (94)
0T = m(k+l) - C'm(k) (105)
But by equation (81)
Aeﬁ(k) - o™ (106)

Hence

) () ()

AT - Ay _ -m (107)
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COMMENTS ON WORKED EXAMPIES

The purpose of the worked examples is to indicete the detalls of
the calculations required. It should be noted that the present method
should not be used for problems of thls size; that is, the method is most
useful when the number of inner polnts 1s much greater than the number of
boundary points.

The rate of convergence for the Dirichlet problem seems to be great
enough for practical purposes while the rate of convergence for the
Neumann problem would seem to indlcafe that & modified procedure should
be used. A tentative modification of the integral equation anslog has
increased the rate of convergence for the Neumann problem and is being
investigated.

The calculstion of the C' matrix was checked by the calculation
of C". This last matrix is not given since its negative differs from
the C' matrix by only & constant for the dlagonal elements.

Since the values of the fundamentsl solutlion were taken to four
decimal places, the third decimal place is not exact.

The worked example of the Dirichlet problem is for the region indi-
cated in figure 1, and the boundary valueas are glven in column zero of

table IIT (M(O) = U). The example of the Neumsnn problem is for the
region in figure 3, and the boundsry differences are given in table VI.
Figures L and 5 show the rates of convergence for these examples.

Case Institute of Technology,
Cleveland, Ohio, June 18, 1956.
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APPENDIX A
GREEN'S IDENTITIES

First and Second Identities

The proof of Green's first and second identities for a finite set of
points given by Courant, Friedrichs, and Lewy (ref. 1) is indicated below
a8 a convenient way to explain the notation. ILet Gl be any set of unit
segments and let G, not necessarily a region, be the end points of these
segments. Let U(x,y) = U(P) be a function defined on G and let BU
be defined for a horizontal segment as the value of U at the right end
point minus the value at the left end point and, for a vertical segment,
as the value at the upper end point minus the value at the lower end
point. If V(P) is another function defined on G, consider the sum

S_' v(P)R[U(P)]
G

wvhere G below the summation sign means thet the sum 1s to be taken over
all points of G and R at a boundary point is to be interpreted
according to 1ts definition in the list of symbols. Consider the terms
of the sum associatéd with the horizontal segment whose left end point
is P and whose right end point is Q. One term arises from each end
point and the terms may be ordered as follows:

v(p) [u(@) - u(®)] + V(Q)[u(r) - U(Q)] = -[v(P) - V(Q)] [U(®) - U(Q)]

By a similar relstion for the vertical segments

Y v(®)R[u(p)] = -Z (8V) (5U) (A1)
G

G 1

where the sum on the right is to be taken over all the segments of Gl'
This is Green's first identity.

By symmetry U and V can be interchanged on the left to get a

similar relation, and the difference of these equations ylelds Green's
second identity

Z [vR(U) - Ww(V)] =0 (A2)
G
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If G 1is a region, U satisfies the Iaplace difference equation
on the inner points of G and V = 1; then, equation (A2) becomes

Z R(U) 50

r

which in the A notation is equation (66). Hence, the condition expressed
by this equation 1s a necessary condition for the existence of a solution
of the Neumann problem.

Also, if G ‘is a region, U satisfies the laplece difference equa-
tion on the inner points and V = U; then, -equation (Al} becomes in the
A notetion,

ﬁtAiﬁ = -Z (‘6U52

Gy

If U =.0 then 8U =0 for all segments of Gl. Hence, U 1is a con~
stent and since U = O, U=o0. If 60U =0 then U 1is a constant.

It is a consequence of these statements that the solution of the Dirichlet
problem is unique 1f it exists and the solution of the Neumann problem is
unigue up to a constant if it exists. For finite regions these results
are well known. However, if the regularity condition 1s imposed on the
function at infinity these stetements can also he asserted for infinite
reglons. This will be proved in the next section by showing that the
above equation holds for infinite regions if U 1Is regular at infinity.

Green's Third Identity

The proof of Green's third identity is given as follows: Iet G
be & finite region and let V(P,Q) = L(P,Q). Then by equation (A2)

Y u(Q)Rg[L(e,Q)) = Z L(P,Q)R[U(Q)]

Q in G Q in G

and since G is the sum of I and T (see symbol list)

y U(Q)Rg[L(p,Q)] = wi + Wy + Wy (23)

QinI
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where
W) = ) ue,R[Ue] (ak)
Qin I
Wy(P) = Z L(e,Qr[U(Q) (45)
@in
W5(P) = - z U(Q)Ry [L(7, Q)] (46)
Qin T

Therefore, Wi(P) may be interpreted as the potential of a mass distri-

‘bution on I; W2(P) may be interpreted as the potential of a mass dis-

tribution on the boundary TI'; and W5(P) is the potential of a dipole
distribution on the segments of N directed from the boundary to the
normal points of dipole density -U(Q). By equation (9) the left side
of equation (A3) is zero if P isnot in I and U(P) if P is in
I. Thus, for any function U(P) defined on a region G

U(P) if P is in I
Wy (P) + Wa(P) + Ws(P) = (AT)
0 if P is not in I

This can be stated as follows: Any function defined on G can be repre-
sented as the sum of g potential due to a mass distribution on the lnner
points, a potential due to a mass distribution on the boundary points,
and a dipole distribution on the normel segments.

ILet a function U(P) be defined as harmcnic on & region G if
R[U(P)] = 0 for all inner points P of G. For such a function, by
equation (Ak), Wp =0 and .-

U(Pp) if P isin I
Wo(P) + W3(P) = (a8)
0 if P 1snot in I
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For finite regions with finite boundaries equation (A8) holdas pPro-
vided that

lim reU =0 ° (A9)

T

uniformly with respect to ©, where r and '8 are poler coordinates.
This is proved by considering a sequence of squares with center at the
origin whose sides espproach infinity. Consider equation (A8) applied to
the part of G in each of these squares. By equations (A9) and (6) it
is seen that the parts of Wo and W5 computed on the boundary of the

square, which is slightly altered so that the region ilnvolved is har-
monic, goes to zero and the theorem is proved. This result may be
strengthened as 1indicated below.

If r2U is uniformly bounded and lim U = ¢ uniformly with
r—
respect to_ 6, 1t will be said that U is regular at infinity. If the
function U =U - ¢ 18 considered then 1lim U =0 and U is regulsr

T
at Infinity. Under these hypotheses it can be shown that Wo and W3
on the squares again approach zero and for U, equation (AB) holds. 1In -

terms of equation (A8) this becomes -

Z L(P,QR|U(Q)| - Z U(Q)RQ[_L@,Q)] +

QinT Q in T
UP) ~c 1f P isin I
Z cRQ[L(P,Q)] = (A10)
¢ if P is not in I

Q@ inT -— . -

To evaluate the last term on the left consider a sufficiently large
square modified as above containing I'« ILet the part of G contained
in the square be denoted by G' and let the boundary of G' be denoted
by '+ T''. If equation (A8) is applied setting U =

I ¢ 1if P 1is in interior of G!
WC +Wc' =
lO if P 1is not in interior of G
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where
Wg = - 2 cRoL(P,Q)
QinT
W' == ) cRGLE,Q)
Q in T

But by equation (A8) applied to the square and its interior

¢ 1if P 1s in interior of square
We' =
0 if P 1s not in interior of square

Hence, if P 1is in both the interior of G' and the interior of the
square, Wp = O. Since the square may be taken as large enough to

include any finite point of the interior of G, Wg' = 0.

Hence, in equation (Al0), the last term on the left side is zero
and equation (A8) for harmonic functions regular et Infinity becomes

U(P) if P isin I
Wao(P) + W5(P) +c= (A11)
0 if P 1s not in T

This formule can be generalized to the case where U is not regular
at infinity. From the discussion ebove,

l if P 1sin I
W) = - ) RfLe,a) - (a12)
O If P isnot in I
Q@ inT

This suggests, as in potentlal theory, defining the mass of U as

M(U) = - Z R[U(Q)] (a13)
@ inT ’
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If U cen be represented in the form

U(P) = ML(P,P') + Ul(P)

where U,(P) is regular at infinity then equation (All) can be shown to

hold. It may be noted that definition (Al3) resembles the definition of
flux In potential theory.

If the components of U are identical then U is a constant func-
tion and W; = W, =0 for all values of P. Also, W3(P) cen be inter-

preted as the potentlal due to a dipole distribution for which all the
components of | equal the same constant, say c. Then by equation (A8)
such a potential is ¢ on 8ll inner points and zero on all other polnts.
Thus, by equation (40) the sum of the columns of C must be zero.

A slmiler enslyslis of the Green's identities for infinite regions
applied to simple-layer potentials shows that condition (68) guarantees
the validlty of Green's ldentities for functions represented by simple-
leyer potentilals.
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APPENDIX B
HOMOGENEOUS INTEGRAL-EQUATION ANAIOG FOR NEUMANN PROBLEM

The homogeneous system corresponding to equation (72) is obtained
by setting AU = O in equation (72); that is,

AW =m (B1)

By equation (68) and the discussion of appendix A W is regular at
infinity and ite value at infinity is zero. Thus, for finite and infi-
nite values of G, Green's identity gives

Z (BW)2 = F.AF (B2)
Gy
But by equations (67) and (B1)
MW =0

Hence, by equation (B2) ®W =0 and W 1s a constant on G. Now on
the set consisting of boundary points of G or the points of the com-
plement of &, W is harmonic. Since the set of boundsry points of

the above set is also the set of boundary points T' of G and since

W 1s constent on P, it follows that W 1s constant on the complement
of G. But the point at infinity is in one of these regions and W 1is
zero at this point. Hence, W 1s identically zero. Hence, Aeﬁ'= 0]
and m = O. Thus the homogeneous integral analog system for the Neumsnn
problem has only the trivial solution and the existence of a unique solu-
tion for the system of equation (72) is proved.
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APPENDIX C
HOMOGENEOUS INTEGRAL~EQUATION ANAIOG FOR DIRICHIET PRORLEM

The homogeneous Iintegral-equation enelog for the Dirichlet problem
is given as follows: In order to prove the existence and uniqueness of
the system of equations (33) or (36) it suffices to prove that the system
of equations

M= -W (c1)
obtained by setting T = O has only the trivial solution.

As & preliminary step a representation of the harmonic extension
of W will be derived. Iet V be that solution of the Iaplece dif-
ference equation on G for which the boundary values V of V are

V=M (c2)
By equation (A8)
V(P) for P in I

Z L(P,Q)R{V(q)] - Z v(Q)Rg[L(P,q)] = (c3)

0 for P in T

-

Q@inT QinT

It is a consequence of equations (C2) and (20) thst

W(p) = - Z V(Q)Ry [L(P,q)] (ck)
@QinT

If H(P) is defined by

H(P) = z 1(2,Q)r[v(a}] (c5)
QinT
then H(P) is harmonic in G, and
V(P) - B(P) for P in I -

W(P) =4 . 6
® [v(p) - H(P)] - v(P) for P in T (€6)
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Also, since E: R[V(QX} =0, H(P) is regular at infinity and is

@ inT
zero at infinity.

From equstions (36) and (C2)
U({P) for P in I

W(P) = (c7)
u(P) - V(P) for P in T

Comparison with equation (C6) yields

U(P) = v(p) - H(P) (c8)
for all points P in G.

If U =0 then by equation (C8)

v(p) = Z m (@ )T.(P, Q) (co)
Qk inT

where

n(%) = R[v(%)] = A% | (c10)
But

m(Qk) = AV + AV (c11)

Hence

AT =0

By reasoning similar to that of the preceding section V is identically
zero and hence M 1s zero. This completes the proof of the existence
and uniqueness of the solution of the integral-equation anslog for the
Dirichlet problem.
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APPENDIX D
CLASSICAL POTENTTAL THEORY

Since the theory in this paper is an anaslog of clessical potential
theory, & brief sketch of this subject and -the reduction of the Neumann
and Dirichlet problems to integral equations 1s given here. All regions
mentioned below are assumed to be at least as regular as is requlred for
the following statements to hold.

If r 1is the distance from a glven polnt to a unit positive elec-
trical point charge, the value of the potential of the charge at the
given point is 1/r in suitable units. This potential function 1s a
solution of the laplace partisl-differential equation

2 2 :
P Fr 3 _

0
3% ay2 3z

in any region not containing the charge. If 8 1s & surface and if a
charge density ml(x,y,z) is defined on the surface, then the poten-

tial H; of this charge dlstribution is

Hl(XJY:Z) = y[];
- %+ (v -2+ (2 - 0)°

The potential H; 1s also a solution of the Laplace differential
equetion in any regular reglon not containing S and is called a simple-
layer potential. This can be verified by direct substitution If the
derivatlves are calculated by inverting the order of differentiation and
integration. It is a central theorem of classical potentisl theory that
any solution of the lLaplace equation in a region can be represented as a
simple-layer potentlal.

ml(g}n)g) aA

If two numerically equal charges of opposite sign are brought together
along a fixed line and the magnitudes of the charges are varied so that the
product of the numericel value of the charges and the distance between ‘them
is held fixed, then the limit of the potential obtalned by letting the dis-
tance between the charges go to zero is called the potential of a dipole
oriented along the given line and has the form o(1/r)/on, where 3d/dn
denotes differentiation along the given line., This element is called a
dipole and is also & solution of the Laplace differential equation. As
above, if a dipole density mo 1s defined on S, the potential
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HZ(X:Y:Z) =ﬂ; m~2(§:’]’§) %;(%)GA

where

r=fx-8)2+(-n2+ (z - t)2

and O/dn denotes differentiation along the normal to 8, is also a
solution of Laplace's differential equation in any regular region not
containing S. It can be shown that any solution of the ILaplace equa-
tion can be represented, up to an additive constant, by Hp, that is,

by a dipole or double-layer potential.

The Dirichlet or first boundary-velue problem of potentiasl theory
consists of finding a solution of laplace's equation in a region which
agssumes given values on the boundary of the region. The second problem
is to £find a solution in the reglon in which the normal derivative on
the boundary is a given function. The first problem can be reduced to
the problem of determining a dipole density on the boundary whose poten-
tial 1s the desired function; the second problem can be formulated as
the problem of determining a charge density on the boundary whose poten-
tial is the desired function. In elther case an integral equation for
the dipole or charge density can be derlved by using either the discon-
tinuity of & dipole distribution on the boundary or the discontinuity of
the normal derivative of a simple-layer potential on the boundery.

For the Isplace equation in two dimensions the physical interpreta-
tion is not so straightforward, but by enalogy with the three-dimensional

case & "charge" 1s considered whose potential is log, = % where r 1is

the distance between the charge and the point at which the potentlal is
being evaluated. Dipoles are as defined previously, but insteed of con-
sidering distributions on surfaces, dlstributions on curves are consid-
ered. All the other statements for the three-dimensional case hold for
the two-dimensional case. Thus the potentials of a charge and the dipole
distributions, respectively, are

By (%,%) =fc m, (&,1)log, ¥ ds

Ho(x,y) =fC mg(g,n)g—n (lose %)ds
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where r = t/(x -£)2+ (y - 'q)?, d/dn indicates differentistion along
the normal to the curve C, and ds is the e€lement of arc length on C.

If the 1limit from the interior of a reglon is denoted by the subscript i
and the limit from the exterior by the subscript e, the discontinuity of
8 double~layer potential on the boundary of a gilven region can be expressed

by

Hzi(x,y) = Hz(x,y) + my(x,y)

HZe(x)y) = Hz(x)y) - ﬂm2(x;y)

where (x,y) 1s a point on the boundary. For a simple-layer potential if,
at a fixed boundery point (X,,¥o), differentiation in the direction of

this normal is denoted by d/dn then

. ’aHl(xo,yo)]
L Bn 1

~nmy (Xo,¥0) + L ml(f.:ﬂ)'g-ﬁ(lose %)ds

FBH:L( X01¥o )]
on

. e

S 1
wmy (X5090) * j; ml(ﬁ:'fl)éz(losei)ds

where C 1is the boundary of the given region.

In order to solve the Dirichlet problem by representing the solution
as & double-layer potential, it is noted that Hei(x,y) must coincide with

the glven boundary value of the desired function. Substituting for Hy
its representation in terms of my ylelds

fc mz(é,n)%(loge %)ds + mmy(x,y) = F(s)

where F(s) is the given value of the desired function at the point on
the boundary curve C, x = x(s), and y = y(8). If the substitutions
are carried out, a linear Integral equation for my 1s obtailned. The

exterior problem leads to a simllar equation if the second discontinuity
condition for a double-layer potential is used.
aH._L X0sY

For the inner Neumann problem it is noted that S is given
n
1f the solution is regarded as represented by a simple~layer potential
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and, hence, the first discontinuity condition for the normal derivative

of a simple-layer potential becomes an integrsl equation for the "charge
density." Sufficlent conditions which ensure the existence and uniqueness
of the solutions of these problems as well as the proofs of the above
statements can be found in reference 6. The outer problem can be solved
by using the second condition.

The potential theoretical approach to the Neumenn and Dirlchlet
problems mey be summarized Iin the following way. The given problem con-
sists of finding a function which satisfies the Iaplace equatlion on a
region and, in the case of the Dirichlet problem, assumes given values
on the boundary of the reglon or, in the case of the Neumann problem,
has a normsl derivative on the boundary which assumes prescribed values
on the boundary. In elther case the unknown functlon is regarded as the
potential of a simple- or double-layer charge density on the boundary
which satisfies & certain integral equation. Thus the original problem
is reduced to the problem of solving an Integral equation for the charge
density. Once the charge density is known, the potential, which is the
desired function, can be computed directly.

The methods given in this paper for handling the corresponding prob-
lems for the Leplace difference equation are analogs of the above methods.
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TABLE I

IAPIACE SOLUTION, o(p,q)

q o] 1 3 I 5 [ T 8 9
0 000,000 ﬁo;m %b,ﬁm l|-50;281 l"TsJy" 512}%2 51|‘2J]—16 %6.‘760 588,‘32 “,871"
1 318,310 620 4ko,376 482,305 516,250 54k, 500 568,422 389,347 607,870
2 Lok 13 k62,007 ho5,962 525,303 550,811 575,181 593,013 610,778
3 0T | 513,944 | 538,190 | 560,359 | 580, 39,76 | 615,387
4 533,548 | 533,152 | 5T,956 | 589,635 | 606,103 403
5 568,916 | 584,679 | 599,992 | 614,631 628,505
6 597,853 027 | 623,925 | 636,386
T 622,338 33,630 | 644,779
8 643,559 | 653,468
9 662,283

q 10 11 12 13 14 15 15 17 18 19
O | 623,676 | 638,869 | 652,735 | 665,488 | 677,294 | 688,83 | 698,562 | 708,217 7,319 | 725,928
1 | 2480 | 639,532 | 653,002 | 665,962 | 677,702 | 688,659 | 698.874 708,k95 | 17,566 | 726,150
2 | 625,842 | 6k k88 2938 | 667,366 | 678,91k | 689,695 659,803 709,317 | T18,%00 726,809
3 | 630,622 | eikeh0 | 657,605 | 669,651 | 680, 691,42k | 01,327 | T10,669 | T19,509 | 727,806
L | 635,618 | 648,847 1,190 | 672,7 683,5 693,782 | 703,22 | Tie,se5 | TRLITL | 729,393
5 | 64,599 | 653,939 | 665,569 | 676, 684, 6%,T3 | 706,015 | Tikh, 723,257 | 31,276
6 2355 | 659,The | 670,607 | 680, 690,784 | 700,152 | 709,079 TLT,59T | 125,34 753,519
T | 655,615 | 666,008 | 676,171 | 685,852 | 635,13 | Toh,051 | Ta2.555 720, 728,565 36,

8 663,251 | 672,88 682,136 691,157 ggz,eﬁ 708,281 6,384 724,189 1,709 ’

9 | 67L,0%8 | 679,622 | 688,395 | 696, s920 | T12,83%6 | 20,509 | 727,938 | 35,227 | The,080
1o | 619,036 | 686,07 | 694,845 | 702,599 | o203 [ TaTiEB [ TeM.BTo 2928 | T3B,780 | A543k
1n 694,194 701,413 708,581 15,659 722,620 T29,k43 L, 116 2,630 Th8, 983
12 708,035 | Tih,634 | 722,233 | 7er,Th2 | TRh,A5T | Tho,h6l 683 | 52,605
13 720, T66 76,878 | 732,999 { 738,982 | Thk,029 | 0,786 6,542
h 72,555 | 18,232 | ™3,885 | T, wggg 60,497
B ™3,551 | 8,831 | Toh,209 | TR9, 6k, 536
15 3,799 ’ 63,739 | T68,638
17 T63,445 | 78,122 | ‘72,

18 2,50 | 716,957
19 T6L,143

G9g0% NI VOVN

eh
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TABIE I.- Continued
LAPLACE SOLUTION, ®(p,q)

a

P
. 23 2k pe] 26 27 -]
o 756,348 763,125 769,622 | TT>,866 781,87 | 787,663
1 56,458 63, 769,50 713,94 | 781,563 7,
2 49 763,675 TT0,151 TT5,336 ,310 788,069
3 7,69 | T, Mo, T63 | TI6, 2,852 | 1788,573
L 38,7 763,306 | 771,638 T, L 1733, 789,274
5 760,032 66,512 712,750 T8, »962 790,165
6 ) 767,959 71,088 1 780,003 785,747 | T9A,2h2
T T63,41h T69, T>,681 | 781,545 787,060 792,
8 5 TTL,525 TT1,395 83,077 5 793,
9 T67,709 T3, 779,338 | 784,887 | 790,272 | 795,99
0 770,153 D, 782,453 786,862 | 792,119 | 797,230
1 72,769 78,323 783,728 788,989 T, 112 799,101
12 T,538 ST 791,255 796,238 | 801,100
13 Shh3 763,627 s 795,687 | 98,487 | 803,217
E , 82 1 191,357 | 796,152 | 800,846 5L
15 84,587 » 798,757 | 803,304 2163
16 T 92,420 796,973 | 801,k%0 | 805, 810,172
17 791,072 793,516 , 900 80h,219 aoe,:g 812,653
18 » ,673 802,891 807,325 811, 815,21
19 797, 783 601,880 | 805,935 809,047 | 813,912 | 817,829
20 801,158 805,125 809,022 | 812, 816,716 | 820,hoh
21 80k,635 2399 812,143 815,861 819,549 823,
2 808,086 | 811,65% | 815,200 | 818,867 s 825,949
23 811,544 815,003 818,455 821,895 825,320 A
2k 818,317 | 821,631 | 8ah, 828,239 | 831,525
25 813 | 821,995 | 83,172 | 83k
26 831,054 83k ,11k gzg.lés
27 837,060 ,
28 8k2,848
P
32 33 3h 35 36 37

BUEIRE BB RN AR RO R R B LR REREbv wa o sunko

i
o~

2997 813,891 818,639 w,m 827,729 832,087
8ag 10 818,845 823, 827,913 7]
809,617 81k, L » 823,767 ,219 | 832,551

814,980 819,665 82h,218 828,645 E”
810,842 815,626 27 82k, 793 ,190 | 833,471
811,675 5409 821,013 825,491 829,851 5

, 817,32k 877 826,308 830,624 834,830
813,750 818,368 822,863 827,251 831,508 835,669
81k, 985 819,534 2965 826,284 8 836,
816,345 820,817 | 825,179 829,435 833,589 837,645
817,817 822,211 | 826,500 830,68 . 838, TT5

5401 823,711 5921 | 82,0 836 839,955
8870 | 8277000 gisl";;.g S%é"”a o | B

2 ) 2 1] £ ¥ E
824, Thl 832, 856,2?.2 8Lo, U7 Bhk,148
826,693 820,634 834,502 838, 2, k5,681
828,719 832,563 836, 8lko,052 8k3,699 8l7,282
830,613 83,560 | 838,246 | B%1,872 ’ o)
832,969 36,618 212 Bha,gg;. 847,235 »
835,179 838,730 8k2,232 ans, ;087 | 852,bh0
837,438 80,892 »302 857,668 s L,
839, Thl 843,098 846,517 89,696 852,935 856,135

2, 845,3h% 88,572 1,765 2922 858,0h3
8hi b5k T 5 T61 853,869 856,946 859,990

» 849,930 852,681 ,006 859,002 861,970
849,278 352a26# 855,228 858,170 1,08 363,980
851,721 | 83,618 857,458 358 863, 866,016
85%,180 859,786 862,567 865,3321 868,075

s 839,376 N 86k, T4 867, 870,155
859,128 s 86k, 867,034 869,649 72,250

) 864,175 866, T34 869,286 871,830 m,ggg
864,098 K 869,068 871,547 874,020 B76,

868,995 871,406 873, 876,2;.3 878,618
873, 876,086 ,
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836,274 8%
8)6,;? 640,361
836, b 840,618

5769 840,879

152 8h1, 202
Gg.m 8,07
838,256 82,212
838,932 842,95
839,728 é‘:f‘m
80,621 ,gg
8k1,60T 8hg,)
842,683 B8A6,505
82 | s

4
6wl | esolckz
87,806 851,598
8,21 2,796
850,802 854,261
06&% 855,786
e | B

) %
87,45 860,680

290 862, k06
861,126 B86h,172
B63,000 865,977
e | ok
368,811 87,581
g | soe
e2 |

»
m | 22

'y 'y
883,087 m,ﬁ?ﬁ
ee:.z 887,533
887, 883,
869,353 891,502
89L,MAT 893,

835,

A3 %6

B R RS RS RSP R R PER P B BN BB RER R BEBLREFER BB om o wun o |75

865,813 | 867,28
,165 | 8er
2= &=
865,654 869,
22| 22
&7, 0,
e | Eo
X 3L,
%69 | 872,803
hap | ohbs
ggzﬁ %Zm
873,005 m:g
T 879,
877,238 | 8606

é.m ga1
, 8 | g83,cB3
=a | 28
g gg;i
886,117 »
887, gg,m
890,85 3 32h
s | chee
9k, 100 896,430
85,73 | 88103
oL | 899,75
S| 2R
50,53 | 90k, Tk
¥ 506,38
g0 | %805
509,535 | @ai,%08
) 3,202
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TABLE IT.- MATRICES FOR DIRICHLET PROBLEM

(2) ny matrix

Inner Normal points
normal
segments 1 2 3 b 5 6 T 8 91| 10
1 -1
2 =1
3 -1
by -1
5 -1
T 6 -1
T -1
8 -1
9 -1
10 -1
11 -1
12 -1
13 -1
iy -1
(b) n matrix
Inner Normsal points
normal .
segments | L |2 |3 |4 |56 7|89 |10 1|12 |13 |1k
1 1
2 1
3 - 1
i3 1
5 1
6 1
T 1
8 1
9 1
10 1
11 1
12 1
13 1
14 1l
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TABLE II.~- MATRICES FOR DIRICHLET PROBIEM - Continued

g matrix

(e)

Column

11110125335210

I T T T T T T T

123.&.5554521000

22221012222101

T e T T T T T " onow

123.4555.&.321000

sz)sz)ElOllllOlQ._

"N onon R I T T D I e

12514555..4321000

S 3NN HO OO O NN
L A T I e T T T T A L
o1 ANt NN AHOAAH

.u_..h_..u.|42/210000_l_23

L )

10123332101222

g j10 {11 12 {13 {14

4 T 4NN AHOOO O NN
LR I A A TA TA AT T T T TR
N OHNNANAHOANKMNMN

8

.u_.l..*h_..h.zzncloooo_l_ncz./

L N S L I T T T

32101110125..4.4.&.

MMM HO A A AHAHO AW

LI A A T T T A T L L L T

A MNMAUAHOOOANMG NININ

22221012222101

IR A T

‘4321000123|4555

11110125353210

I A T nNoR N L I T

4521000123&.555

000012544.&.\4321

LA T "oy

52101110123.&..&.\4

0000127)\4.4‘4.4521

L A T T “ ononow

21012221012353

0000125.4\4414521

L AT T T T A L AT

101257)2)2101222

0000123.&..4)4.&.311

n o8N onon

012314.4.43210111

Row

~ QM N0 =0 VO H N
g I QR

(d) b matrix

Column

10

22221012222102

R I T A T T

0123.&..&..&.3210111

MmO A A0 4N

L AT ) "

oAt F NN A A A A

52)3321.%01111012
L)

L A A no oW “" N
HOoOAMNMMMNMNAMOAHNAUQ

33332101111012

"N ow o

21012221012333

33332101111012

nonowon "nonow

52101110123..4.414

22221012222101

A T )

2)2101110123.4.414

11110123335210

LAY I L TR

52101110125.&..4.4

11110123335210

L A T T T T T

210122210122)2)3

11110125332)210

L I T A TR T I T A T

101._232)2)2101222

ll.l_lo.l_n/_sz)z)z)Elo

EATATRY L L L

0123&.]4.42)210111

Row

123.&.56789_@__”_”_5




TABIE IY.~ MATRICES FOR DIRICHLET PROBLEM - Contlmued
(e) & matrlx

g

FhabLBououovrane

Column

4 5 6 Vi 8 9 10
¢.4303 | 0.482h | 0.kst0 | 0.51h0 | 0.5140 | 0.4960 | 0.482L
3634 | Jhhoh | . 4881 ] . kaek | LhTT0
2500 | L3866 | Aok ] Mb22 ] . k770 | 582k
0 31851 3866 | ubob | ATrOl WBE2h [ L4960
3185 |0 2500 | J3634 | JAhOM Y hbez | hBE)
386 0 J2500 | 3866 | . JLabh | 4622
Lhok | 3634 .00 40 31831 .5866

ATT0 3866 | .3183 |0 2500 | 3634
h82Lk | k622 bl | 3866 ) 25000 «2500
hoto | 4881 | .aez2| ko] .363%| =00 |0
S| .m0 Jbo60) 482 B303| 363 | 2500
S0 ) 5253 5163 | 5109 B2k ., 3866
A960 | 5163 ) S12g9 | 5183 Jbo60 ) Jhd22 ) Ja2h
482k | 5129 5163 | 5253 | W51h0] JLBBL | Jh62e

§

Coluwm

2 3 L 5 6 T 8
0.5183 | 0.3866 | 0.540% | 0.4622 | 04881 ) 0.h622 | 0. Lbok
. 5183 | .3866 | Jhobh | -bE2e| Jhhok | 4303
J3185 0 L2500 L5183 ) Aok ) Jeos|

. S183 1 .2500] 3634 J4303] L4hOh | 622
H4303 | 363% | .em00| 3183 | J3BE6| Jhokk ] Jh6e2
. . .5185) 2500} 383 . Lhhol
Abe2 | hahk ) (3866 3183 2500 3634 | 4303
Abop |, 305 | 363k | 2S00 J3B3 | .
kol .Ega Jbol |, 83| .s00] 3183
Az05) . 622 ] Jhohh| .3B66] L3183 .2500
Jhohh | (WSo2| koGO . AT Eg_: « 36
3065 | Jhoh | RB2R) ATO| JHB24| . .
S5 | s%03 ) Jrro| g2k | Jhoco| Jus22 | oLk

9B0% NI VOVN




TABIE IT.- MATRICES FOR DIRICHIET PROBIEM - Coneluded

{g) C matrix

Column
Row
1 2 3 b 5 6 7 8 9 10 11 12 13 1h

1{0.2500]0.06683]0.0232|0,0101| ~0. 0420 }-0.0338 |-0.0259]-0.0256 |-0. 0338 | ~0.0420|~0.046T | =0. 0201 |-0.0232| -0. 0683
2| .0683| .2500] .0683] .0232| -.0538| ~.03T8| «.0259| ~.0338{ ~.0420| -.0467| -.0420) -.0218| -.03T8| ~.0683
3| .0232| .0683) .2500] .0683| -.0683| -.0378| -.0218) -.0k20) -.okeT7]| -.0420| -.0%38| -.0259| -.0378| -.0538
4] .o101| .0232] .0683] .2500| -.0683| -.0232| -.010L| ~.O468| ~.0420| ~.0338] -.0259] -.0259| -.0338| ~.0k20
5] -.0054 |-.0101|-.0232]|-. 0683 .2500| .0683| .0232| -.0538| -.0378| -.0259] -.0180| -.0293| -.0339{ ~.0359
6| ~.0136|~.0218|~.0378{-.0685| .0683| .2500] .0683| -.0685| ~.0378( -.0218| ~.0136| ~.0339| -.0355| -.0339
7| --0180 -.0259-0378-33658 .0232] L0683 .2500| -.0683] -.0232] ~.0101| -.005k| -.0359] ~.0339| -.0293
8| ~.0259|-.0338|~.0420{~.0467| ~.0L0L| ~.0252| -.0683| .2500| .0683| .0232( .010L| -.0420| -.0338| ~.0259
9] -.0538{-.0420|~.O0467] -.0k20| ~.021B8} -.0378] -.0683| .0683| .2500| .0683| .0232| -.0538] -.0378| -.0259
10| ~.0420 |-, 0467 [~. 0420 ~.0%38] ~.0259] ~.0378| ~.0538| .0232| .0683| .2500| .0683| -.0683| -.0378{ -.0218
11| ~.046T|~.0420)~,0B38]-.0259] -.0259] -.0338| -.0k20| .0101{ .0232| .0683| .2500| ~.0683} -.0232| -.0l01
12| -.0538{~.0378|~.0259] -.0180| ~.0293| -.0339( ~.0359} ~.0054| -.0101| -.0232| -.0683| .2500| .0683( .0232
13{ -.0683|~.0578]-.0218] -.0136| ~.0539] ~.0359| -.0339] -.0136| -.0218] -.0378| -.0683| .0683] .2500| .0683
14| -.0683|=.0232|-.0101] -.005L] -.0359| -.0339| ~.0295] -.0280| ~.0259| ~.0378| -.0538| .0232| .0683| .2500

S R
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TARLE ITI.- APPROXIMATE VALUES OF M FOR DIRICHLET PROBLEM

Iteration number

=

o] 1 2 3 4 5 6 7 8 9 10

1.270) 1.688) 1.767) 1.762) 1.743) 1.727) 1.7i7) 1.711] 1.708) 1.706] 1.705
2.170} 2.586| 2.613} 2.579| 2.547| 2.526] 2.513]| 2.505} 2.501} 2.499} 2.497
=1.970]-2.581-2.775|-2.884}-2.939| -2.96T}-2.982}-2.991] -2.99%5 |-2.997 |-2.999
-1.520|-2.182|-2.469]|-2.592| -2.64T|-2.6Tk|~2.687|-2.694|-2.698 |-2. 770 )-2.T0L
3.360| h.269} 4.508] 4.5Th| 4.592] 4.596] L4.598) 4.598] 4.598| 4.597| 4.597
8Lof 1.083) 1.156( 1.183} 1.193] 1.198| 1.200| 1.200| 1.201f 1.201| 1.201
~.100|-k.925]-5.086}-5.109]-5.108}-5.104|-5.101{-5.100]|-5.095[-5.098 |-5.098
1.170) 1.961] 2.34k| 2.525] 2.611]| 2.653] 2.675| 2.684| 2.689} 2.692] 2.694
1.580] 2.409] 2.805) 2.999] 3.096f 3.145(| 3.17L| 3.18%f 3.190| 3.19%| 3.196
900} 1.393] 1.663| 1.815| 1.899] 1.94k} 1.968{ 1.980| 1.987| 1.991} 1.993
~1.220(-1.292(-1.20%{~1.122}-1.067}|-1.036(~1.018 |~1.008} -1.003|-1.001{ -.999
«1.280}-1.669}-1.84k|~1.927|-1.967]-1.986}~1.995 |-2.000]-2.001}-2.002}-2.003
-.2h0) -.621) -.865] -.991)-1.052{-1.081]~1.095]-1.101|-1.10%}-1.106]-1.106
-1.790}-2.452}-2.748|~-2.88k|-2.946]-2.975]|~2.989-2.995| -2.998 | ~3.000}-5.001

\O 00—3 WV "\ )

A el
=Gk o

TABLE IV.- ERROR OF APPROXIMATE SOLUTION FOR DIRICELET PROBLEM®

Tteration number

1 2. . 3 L 5 6 7 8 9 10

0.418}0.080]-0.006 |-0.019-0.015|-0.010 |-0.006 }-0.003 |-0.002]-0.001
L16| .028] -.05341 -.0%32] -.0210) -.01%3| -.007| ~.004| -.002} -.001
-571]=.233| -.109| -.055| ~.029] -.015} -.008] -.00k] -.002| -.001
~662]|=.286] -.123) -.056] -.027| -.033| -.007| -.004| -.002] -.001
909 .239| .065| .018| .005| .001) O 0 0 0
243 o3| .027f .o11| .00k} .002] .0O1] O 0 o]
-.825)-.161} ~.023| .002| .o04| .003j .001| .0OL| O 0

.791| .383! .180| .086} .ok2y .021| .011f .OOS| .003] .0O1

829 .3961 .94 .oo97| o9} .025f( .013| .0O7| .ook| .0O2

Lo3| o0l 1521 .084] o455 .o2hk| .013] .007| .OOK| .0O2
-.072| .088} .082}( .054| .03%32] .018} .010| .005} .OO3| .OOL
-.389}-.175) -.083} ~.040} -.019} -.009{ -.004} -.002} -.001] Q
-.381] -2k} -,126] «.,061] -.029] -.014] ~.006| -.003} -.001
14| -~.662{-.297] -.135] ~.062} -.029] -.014| ~.006} -.003} -.001} -.00L

o
GREBwmaou suin

]
8
=

& e(k+l) is error of kth approximastion.




TARIE V.- MATRICES POR FEIMANN FROBLEM

(a) T' apd " matrix

Eaod points of
axterior
normal segments

Exterior normal segments

SR L]

18

16

7

B

15

a2

a3

PEBE BN R R REELRREFRREEBvoaaurun w

L

-1

Lw

-1

=l

-1

-1

<11 1

-1

-1

Ly

=1

-

-1
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TABIE V.- MATRICES FOR NEUMANN PROBLEM - Continued

(®) (ng"n'),

metrix

End points
of exterior
norme.l segments

Boundary pointe

6

T

8

9

10

11

12

15

14

O OO\ FEWN -

-1
-1

-1

=1

-1

-1

-1

-1

-1
-1

-1
-1

-1

-1

-1

=1
-1

-1
-1

-1

=1

-1

-1

-1

-1
-1

-1
=1

-1

-1

-1

=1

-1
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TABLE V.- MATRICES FOR NEUMANN PROBLEM - Continued

matrix

(c) at

Column

14

.I_lllOl22)537)2101222210123\4.&..4..43210

L A T T T T T T T A A T I I I I T T I T T T T T LA A TA T

.I_22/&.555.47)210000123.&.56665&.3210111

15

adaddHoOoO-HNNNANHOHNMMMNMNAUHO AN A O A

L L L R N T A R I L I L L N L L L I LY

HAUAMFTNNNTNMNAUNAOOOOAAMTINOVOOVOINSEFMNMNANUAO A

12

353321011110123.&..&.4.&.3210122221012

L AR LI T B T A A s B D I T T L T e T T I T T L S

123.4555.43210000123.456665.&.3210111

.u..u..u_..h_.ZJElOOOOlezJ\n_.55554321011110123

L N N N T T S N L I I I I R A L T T T S

012314.&...4521011110125&.555432101222

10

.n_..h_..u_...u.3210000123\45555.4321011110122)

L R LA N S L T I T A T L I DL L L. .S

_I_O_I_252)2)2101222210123.&..&..&.321012335

h.|4445210000125‘45555.4321O_I_ll.I_OlD._z)

-~ L A T I T ) A A T T L L LY

Ao AN AU NN AO A AN N O O RS

4\414.43210000125.&.5555\4321011110125

L AT L I R I I T A L A T T T I T T T N L L Y

52101110125.&..&..&..&.32101222101234555

533321011110123.4&..4&.3210122221012

non R R L AT AT R T I I T I T A B I I A N I N R N T

.n_.32_I_000123\45555452101110123&.5/066

22221012222101255532101253332101

L A A I s T T A T e e T L N S O T N R R T . T L

4321000125;45555.43210111012345666

111101235532101222210125..4\4.414321._0

L I T I T T T A T T T I T T I T A L L [ nonoRon

\42)21000123145555.432101110122).45666

00001254\4.&..4321011110125.45555.4321

LT T N T T O O N N T ) non N e LS

7)2101110122/.4.“_.‘4.42/210122210123.4555

0000123h.h.h.h.32101ll10123145555|4321._

L I A A T T T T T T T T T L LI

210122210122)2)3521012333210123..41414

OOOOln/_Zzh.h..n_.h.ZJn/_lOllllOl22)1._.5555.42)21

A A T T T A T I T T T T T A T T - - L L

HoTA MO AANNNAAO A NN A O QNN NS

0000125.4.44\42)21011110123.45555.&.321

L T T T A T T T T T A T T T TP T T I T T T T T T T T L L

O_I_n/_ZJh.h_..Uer?_lOllll012314555.432101222

Row

AN NOONOHAUNTINONM~OND AN ST INO OO AN
lllllﬁ/llmlm222222222mﬂ35
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TABIZ V.- MATRICES FOR NEUMANN PROBLEM - Continued
(8) A' matrix
Column N
Row
1 2 3 [3 T 8 9 10 1 12 13 1k
1{o0 0.2500 | 0.3634 | 0.k%03 | 0.k82k | 0.4960 | 0.5140 | 0.5240 | 0.4960 | O.482k o.t@ O.kkoh | 0.3866 | 0.3183
2 2500 | O . 363l hoh L622 881 960 482y LTTO0 . h622 et + 3866
3 3634 2500 | O 2500 3866 il 4622 J82h AT0 A8k 4960 4881 J622 JAhos
& 4303 3634 2500 3183 3866 hloh AT70 h82k 5960 Slko | .5tk Jg60 482k
5 482k B0 3866 31851 o 2500 3654 hok 5622 hasr 510 5253 5163 5129
6 kg60 S22 | Jheohk 3866 2500 | 0 2500 3866 | Juakh |, Jb622 Jhg60 5163 | 5120 | L5165
T 5140 4881 4622 JBhol 3634 2500 {0 .3183 3866 JBhoh . 5129 .2165 5253
8 5150 4960 &gal S4T70 Aok 3866 .5183 «2500 +3634 J1303 A82k 4960 gggo
9 4960 4824 Q770 A8ak S622 JLobl 5866 2500 | @ 2500 3634 JBhol 622 -ha81
10 4820 | k770 | JL82k 5960 41881 | Ju622 | LJhhob 3634 2500 | o 2500 3866 | Jwehh | (k622
n L4770 182k 4960 51k0 5150 1960 4H2h %303 23634 2500 | 0 3183 .3866 Sihoh
12 | JLhok 4622 | k881 | 33h0 | 5233 3163 5129 4824 | hhok . 3066 3183 | o L2500 | 3634
13 3866 R T 4622 4560 8163 5129 | .5163 4960 4622 Jonh +3866 .2500 2500
% 3183 3866 Jhok 4824 5129 5163 5253 J5L40 4881 k622 JAhol 5634 2500 | O
15 2500 o363k 4303 S0 5163 5253 5382 5336 .51%0 960 4824 30 «363L 2500
16 | 2500 [ 3185 | .3866 | .ok | oS0 | . 5336 5382 5255 | 5163 | 5129 haez JABOR | L3866
17T | .3183 L2500 | L3183 | .3866 4622 2851 S1h0 5253 5163 5129 | L5163 | 4960 | Jb22 | Lhauk
18 3866 3183 2500 3183 Johl JS622 4960 5163 5129 5163 5253 5140 4881 h62
19 Jhok 3866 .3183 «2500 3866 RIY:H 482k 38129 5163 5253 5382 5336 5140 k960
20 | JM770 | 4303 3634 2500 | .2300 | .363% 14303 RN R 5140 5336 5382 52 5163
21 5163 L8l Jikok 3866 .2500 3183 3866 Ji622 4881 51h0 5382 5508 W»E Sh21
22 5253 | Juoko | Jhe22 By 3183 L2500 | L3183 RN J623 | Jhoso | 3283 Sk | 9ke1 | JShik
25 | 5382 | .s1ko | 4881 | .L6e2 Esﬁé 3183 | .2%00 3866 . A82h | 5163 SR2L | Skl 5508
24 5336 Suko | Jko6o | 482y | D303 | .363% | .2%00 | L2500 | .36%% | 4303 ATT0 .2165 5255 | 5382
o] 5382 5253 5163 5129 82k JBhob .3866 2500 3183 3866 kO 3560 3881 5336
26 S253 | 563 | 5129 | LB163 4960 | Ju622 | Jhokk 3183 2500 | .3183 | 3866 S22 5140
21 | 3163 | 5120 | 5163 5233 5140 . 4622 3866 .3183 | .2s00 | 3183 Je2hl J622 | Lh960
8 g 5163 5253 35382 5336 5150 4960 .koh .3866 | - 3183 2500 +3866 Bhok 482k
29 R 5960 <5140 5336 <5382 525 5165 o 4303 3634 « 2500 2500 3634 303
30 JL622 4881 | 140 5382 ;age :ME Sh21 5163 82k hL0h . 2500 | 383 | .3866
31 Jokk | k622 | heso 5253 Shhl Shot | 5hbh 5253 D960 | JM622 | Lh2kk | L3183 2500 | .3183
32 | .3866 R ABok [ %163 1 Jsk2y | (Shkk 5508 5382 | .51k0 4881 | w622 | .3866 | .3183 | .2300
TABLE V.- MATRICES FOR NEWANN PROBLEM - Concluded
(e) c* matrix
Colum
Row
1 2 3 i 5 6 T 8 9 10 h3 % 12 13 1k
1| 0.7500 | ~0.0683 |-0.0233 |-0.0101 | 0.0055 | 0,015 | 0.0179 |0.0258 | 0.0337 | 0.0421 | 0.0467 | 0.055T | 0.0684 | 0.0683
2] -.0683 500 | ~.068% | -.0235| .0100f .0219| 02591 0337} .ok21{ .o&6T7| .ok | .0379 ] .0378 | .0233
3] -.0235 | -.0683 . -~.0683 | .0233| .0378 | .0379 | .ok2a| .ou67) .o21 ]| .0337| .0259 | .ozg | .o100
Bl -~.0101 | -.0255 | -.06853] .7500| .0683| .068% | .0537 | .ok67| .ok21| .0337| .0258 .olzga 0135 | L0055
5| .oh2L ] .0337| .068h .0685 | .7300 | -.0683 | -.0233 | .0100] .0219)| .08 | .0238 ] .0 0337 | .0360
6| .o%337) 0379 .0378 L0233 [ -.0683 | .7500 | -.0683 | .0233| 0378 | .03T9 .0257 0337 | .0360 | .033T
71 .0258 0259 | .0219 j .0100 | -.0233 | ~.0683 | .T500 | 0683 | .068k | .053T| . 0360 | .0337 | .c29%
8] .08 | .o337| .ob2l | .ou6T| 0537 .068% | .0683 | .7500 | -.0683 | ~.0233 | ~.000L | 0055 | .0135 | .01T9
g| .0337 Qb1 JOHET o821 | L0379 ) 0378 | .023T |-.0683 | .7500 ] -.0683 | -.0235 | .0100 om_f.g 0259
10| .obal]| .oke7| .ov2l| .0337) .0259| .0219 | .0100 |-.0233 | -.0683 | .7900 |-.0683 | .0233 | .03 0379
1| .os67| .osel | 03371 . Qo179 LJouss | . -.0101 | -.0235 [ ~.0685 | 7500 | .0683 | .0684 | .093T
12] .0100 0219 0259 . L0294 | 0337 ) L0360 j .okl | .0537| .068% | .0683 | 7500 |-.0683 |-.0233
13| 0233 .03 0379 | 0337} .0337] .0360] (0337 | .0337] 0379 .0378 | .0233|-.0685 | .7500 |-.0683
1] L0683 L0684 <0537 J0k21 | 0360 | L0337 | . 0289 | .0219] .0000 |~-.0253 [-.068% | .7500
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TABIE VI.- APFROXIMATE VALUBS OF m FOR NEUMAKR PROBIEM
E}iven values of AU taken as (0 are -0.60, -0.46, 0.32, -1.06, 1.48,
0.65, -0.03, -0.64, -0.h2, -0.T7, -0.78, 1.06, 0.30, and 0.95]
Iteration number
m
1 2 3 " 5 6 T 8 g 10 11 12 13 1y
11-0.956 | -1.263 | ~1.278 | ~1.338 | =1.365 | -1.367 | -1.359 | -1.3%2 | ~2.319 | -1.253 ~1.265 | -1.235 | -1.206 | -1.175
2 67| --979|-2.129 | -1.2k1 | -1.327 | -1.395 | -1.k49 | -1.h95 | -1.529 | -1.558 -1.581 [ -1.599 | -1.613 |-1.62%
3 6T | 1.020} 1.338| 1.621 | 1.866 | 2.077| 2.257 | 2.509 2.539 | 2.659| 2.7%3| 2.82k | 2.8¢2 | 2.952
b 1-1.1781 -2.286 | -2.6kT | -2.910 | ~3.10% [ -3.247 | -3.355 [ -3.431 | -3.487 | -3.526 =3.592 | =3.56T | =3.5T6 |=3.5T5
5| 2.566| 3.188| 3.63T| 3.999| k.27 485 | 653 . 4,898 .9891 5.066| 5.132 | 5.189 | 5.2%0
6 +980 ) 1.152} 1.2461 1.30L| 1.338| 1.366| 1.350 | 1.k12] 1.432 4521 LA 1.489 ] 1.507 | 1.525
T| =-235| =4T3| -.696] -.881(-1.027 | -1.1236 | -1.215 | -L.270 | -1.305 | -1.325 | -1.334 | -1.33% { -1.328 ~-1.317
8| ~.98k 1 -1.279 [ -1.297{ ~1.3Th | ~1.526 | -1.461 | -1.486 | -2.%502 | -1.509 ~1.511 [ -1.508 { -1.501 | -1.%91 |-1.%77
9 -.568| -.587| -.548| -.k86| 16| -. ~.283 ] -~.22h -170| -.122( -.078] -.038) -.002 | -.051
10 [ -2.195 1 -1.435 | ~2.575 | =1.655 | -1.706 | -1.T37 | ~1.T58 [ ~1.T71 | -L.779 | -2.785 | -1.785 | -1.185 | -1.783 -1.780
1 1-1.181 | -1.373 1 -1.452 | -1.566 | ~1.448 | -1.11% | -1.370 | -1.327 | -1.282 | -1.238 -1.196 | -1.156 | -1.118 | -1.082
2| 1.865] 2.478| 2.955| 3.327| 3.62%{ 3.855| 4.0%3 | k.Ioh| h.317| 4.518| k.50 4.569 | 4.626 | 4.67h
13 320) 2.052 <03 [ -.1hg | -.325 | -.483| -.619| ~.735| -.828| -.c04| -.965|-1.013 |-1.050 ~1.07T
1% ) 1.53T) 1.920) 2.178| 2.36h | 2.507 | 2.625| 2.722| 2.808| 2.886| 2.956} 3.021| 3.081 3.136 | 3.1688
TABIE VII.- ERROR OF AFPROKXIMATE SOLUTION FOR NEUMANN PROBLEM
Iteration mmber
€
{a) 1 2 3 |3 5 [3 T 9 10 n 12 13 ik
1 [-0.356 | -0.207 | -0.115 | ~0.060 | -0.025 | -0.00% | 0.009 | 0.017 | 0.023 | 0.026 | 0.028 | 0.02%  0.0% | 0.03%0
2 -.30T} -.221| -.151f =112 -.086| -.068|-.054 ] -. -.036 | -.289 [ -.231 | -.018 | -.01% | -.010
3 354 346 .318 .282 255 212 | .Ja8c| .153| .230)] 10| .o9k| .080 | .069| .o59
Y -T2 | -505] -.361 263 -.194 | -.1k3] -.3106|-.078 | -.056 | -.039 | -.026 | -.015 | -.007 | -.001
5 986 .682 . 362 2Th 22| .168! .13 J110| 091 .of7| .066] 057 | .051
6 330 172 0%k .055 037 028 | 025 .022) .020)| .020| .019| .018| .018| .017
b -.203 | =-.2h1{ -.225| -.185( -.145| -.209)-.079[-.055]-.035]-.020] -.009]0 006 | .0L1.
8 -8 ) -u195 | -.118) -.077| -.052 .036 | -~.02k | -.015} ~.008 | -.002| .003| .00T| .02L[ .01%
9 -.148 | -.019 .039 063 .069 069 059 . .Oh9| Ouh| .0%0| .036| .033
10 k25| 280} -.1 -.082| -.050] -.032}-.020]|-.013]-.008 |~.005(-.002 |0 .002 | .003
k3 =401 | =192t -.077] -.015 .018 0351 Oh2 055 | o451} o4k | .ok2| .okO| .038 | .0%6
12 .803 615 RY 372 294 .23 .188{ .151| .123| .102] .08%| .068] .o57| .ok8
13 020 | -.125} -am| -8k | -.a76| -.1581-.136] -.135 ] -. -0T7 | -.06) | -.048 | -.0%6 | -.027
1 .5%0 .380 258 .186 k3 160 099 .087| .078| .OTL| .065| .00 . 052

a G(k—!-l) is

error of kth approximation.
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A Normal point (1 to 10; v= 10)
O Boundary point (1 to 14; v = 14)
Normal segment (unit length)

(1 to 14; B = 14)

Figure 1.- Reglon showing boundary points, normel points, and inner
normal segments used in calculation of C for Dirichlet problem.
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O Boundary point (1 to 14; v = 14)
O Exterior normal point (15 to 32;

—w—— Directed exterior normal segment
length) (1 to 32; Tt= 32)

Figure 2.-= Region showing boundary polnts, exterior

exterior normal segments usged in csleculation of
problem.

£ = 32)
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normal points, and

C' for Neumann
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Figure 3.- Region showing boundery points
segments used in calculetion of c"

O Boundary point (1 to 14; v = 14)
A Normal points (1 to 10; w= 10)

—3w— Inner normasl directed from normal to

inner points (1 to 14; B = 14)

inner normal points, and
in Dirichlet problem.

inner
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epproximation
2.800
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Figure 4.~ Error of successive approximations at ninth boundary point. (For spproximetions 0

2 to 15 this is bound for ebsolute error.)
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N I O OO O
6 7 8 910111213

Number of approxim=stion

Figure 5.- Maximum error [:e(k)]m at boundary for Neuman problem where

[e(k)]max = . §mixg " Ier(k'*'l)‘ and Er(lﬁl) = IA:LUr - AiUr(k) .
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